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Content-addressable memory with spiking neurons

R. Mueller and A. V. M. Herz
Innovationskolleg Theoretische Biologie, Humboldt-Universita¨t zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany

~Received 25 June 1998!

Time evolution and cooperative phenomena of networks with spiking model neurons are analyzed with
emphasis on systems that could be used as content-addressable memories. Stored memories are represented by
distributed patterns of neural activity where single cells either fire periodically or remain quiescent. Two
distinct mechanisms to generate relaxation behavior toward such periodic solutions are investigated: delayed
feedback and subthreshold oscillations. Using theoretical analysis and numerical simulations it is shown that in
both cases model networks with integrate-and-fire neurons possess storage capabilities similar to those of
conventional associative neural networks.@S1063-651X~99!09202-8#

PACS number~s!: 87.10.1e, 05.20.2y, 07.05.Mh, 64.60.Cn
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I. INTRODUCTION

Recurrent neural networks may be programmed to fu
tion as content-addressable memories that recover stored
terns from incomplete or noisy inputs. To do so, correlatio
within patterns to be memorized are encoded in the syna
weights. By this procedure, multiple patterns can be imp
mented as fixed-point attractors of the network dynam
Starting from an initial state close to one of the stored attr
tors, the system dynamics relaxes to this attractor and
retrieves the stored pattern@1–3#.

Various brain regions have been hypothesized to ope
as content-addressable memories, for example, the CA3
gion in the hippocampus and locally connected system
pyramidal cells in neocortical association areas@4–6#. Tra-
ditionally, these systems have been modeled using coa
grained dynamical descriptions based on short-time avera
firing rates. This approach leads either to models with c
tinuous time and real-valued state variables~‘‘graded-
response neurons’’! @2,3# or to systems with discrete tim
and binary@1,7# or real-valued state variables@8,9#. Exten-
sive theoretical results regarding the convergence prope
and storage capacity of such ‘‘attractor neural network
have been derived@10–12#.

Most cortical neurons communicate using discrete pu
of electrical activity, called ‘‘action potentials’’ or ‘‘spikes.’
Firing-rate models neglect this characteristic feature of n
ral signals. It is, therefore, important to compare the coll
tive properties of biologically more realistic approaches w
those of the traditional network models. Previous stud
have demonstrated that systems with spiking model neu
offer computational possibilities not shared by models ba
on firing rates such as computations based on relative s
times @13–18#. On the other hand, it has also been sho
that for stationary solutions, firing-rate descriptions cove
large class of networks with spiking model neurons@19#.

The apparent discrepancy between these two lines o
search is resolved if one realizes that results based on
dynamics of specific models can only demonstrate the r
ness of phenomena generated by that very class of mo
Other models may or may not exhibit the same phenome
Results obtained with specific models are nevertheless
tremely useful to prove the feasibility of computation
PRE 591063-651X/99/59~3!/3330~9!/$15.00
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mechanisms. It is in this spirit that we investigate associa
capabilities of model networks with integrate-and-fire ne
rons.

This study focuses on systems in which stored bin
memories are represented by distributed patterns of ne
activity where single cells either fire periodically~the ‘‘on’’-
state! or remain completely quiescent~the ‘‘off ’’- state!.
Two different mechanisms to achieve such behavior are
vestigated in detail: delayed feedback within the model n
work and externally generated subthreshold oscillations.
demonstrate that both mechanisms give rise to collec
properties that are almost identical with those of the Lit
model @7#, one of the classical attractor neural network
Since periodic membrane oscillations due to rhythmic ba
ground activity are typical for various brain regions, our r
sults indicate that such oscillations may play a beneficial r
in content-addressable memory processes@20#. The results
also show that although the microscopic time evolution
integrate-and-fire neurons strongly differs from that
graded-response neurons or binary neurons, the collec
network dynamics may nevertheless exhibit rather sim
phenomena.

II. MODEL SYSTEMS

Biological neurons generate an action potential when th
cell body ~soma! is sufficiently depolarized. The action po
tential then propagates along the axon to synapses on
dendritic trees of downstream~postsynaptic! neurons. When
the action potential arrives at a synapse it initiates the rele
of neurotransmitter which leads to a flow of ionic curren
that depolarize or hyperpolarize the postsynaptic cell. D
pending on the integrated inputs from the many thous
cells a cortical neuron is typically connected with, th
postsynaptic neuron will in turn fire an action potential
some later time and thus influence further neurons. Feedb
through recurrent connections results in complicated s
tiotemporal dynamics.

Model neural networks are constructed to capture imp
tant features of these intricate dynamical processes. In o
to allow for an analysis of the collective behavior of larg
feedback networks, the microscopic dynamics has to be s
plified as much as possible. Individual neurons are there
3330 ©1999 The American Physical Society
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PRE 59 3331CONTENT-ADDRESSABLE MEMORY WITH SPIKING NEURONS
often considered to be electrotonically compact. Within t
class of model, ‘‘integrate-and-fire’’ neurons@16,21–29# are
characterized by a particularly simple description in that
state of each neuroni (1< i<N) is modeled by a single
dynamical variableui , the membrane potential at the som

If the membrane potentialui is below the firing threshold
uthresh, integrate-and-fire neurons operate as leaky integ
tors,

C
dui~ t !

dt
52

1

R
@ui~ t !2u0#1I i~ t !. ~1!

The capacitanceC and the resistanceR of the cell membrane
determine the membrane time constanttRC5RC. In the ab-
sence of an input currentI i(t), the membrane potentialui(t)
approaches its rest valueu0 .

Within the mathematical formulation, the termu0 /R can
be absorbed inI i(t) and we will therefore focus on the cas
u050 without loss of generality. By rescaling timet and
input currentI i , the capacitanceC and resistanceR can be
taken as one and we arrive at

dui~ t !

dt
52ui~ t !1I i~ t !. ~2!

When the membrane potential of an integrate-and-fire mo
neuron reaches the firing thresholduthresh, the cell generates
a uniform action potential modeled as ad pulse, and the
membrane potential is reset toureset,uthresh. The output of
an integrate-and-fire neuron is thus just a sequence od
pulses.

For convenience, units can be chosen such thatuthresh
51 andureset50. Since the reset is assumed to be instan
neous, the membrane potentialui takes two values when ce
i generates an action potential at timet. Where necessary
these two values will be denoted byui(t

2) andui(t
1). To

simplify the notation, temporal arguments otherwise alwa
refer to the time immediately prior to firing. Special care h
to be taken in systems withd-shaped input currents that ma
cause a cell to generate an action potential at timet even if
immediately prior to that instant, its membrane potentia
strictly below the firing threshold. In particular, a positiv
input of the formId(t2 t̃ ) will cause an action potential in
subthreshold cell ifI>12ui( t̃ 2). This example shows tha
in models with integrate-and-fire neurons one has to take
dynamical consequences ofd-shaped postsynaptic curren
into careful consideration.

The reset process can be formally included in the ti
evolution ~2! by an additional effective currentI i

reset that
guarantees that the membrane potentialui is reset to zero
immediately after neuroni generates an action potential. D
noting input currents to celli from other neurons in the mod
eled network byI i

network and input currents due to extern
stimuli and background activity byI i

external, we get

I i~ t !5I i
network~ t !1I i

external~ t !1I i
reset~ t !, ~3!

where

I i
reset~ t !52(

f
ui~ t i , f

2 !d~ t2t i , f !. ~4!
s

e

.
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Here,t i , f with f PN are the times when neuroni generates an
action potential. The factorui(t i , f

2 ) takes thed contributions
mentioned above into account and guarantees that the m
brane potential of celli is reset to zero.

From a biological point of view, Eq.~4! describes a situ-
ation where ionic currents due to spike generation are
strong that they override any simultaneous input curre
Consistent with this picture, currents caused by previous s
aptic inputs will be set to zero when a cell emits an act
potential. Backpropagating action potentials@30# could pro-
vide a biophysical mechanism for this phenomenon in b
logical neurons. In order to properly formulate this chara
teristic of the dynamics, let us now focus on the postsyna
effects of spike activity.

If, say, neuronj spikes, an action potential travels alon
its axon to other neurons. When it arrives at a synapse w
neuroni, neurotransmitter is released and triggers a posts
aptic current in celli. The shape of the current resulting
the soma is denoted bya(t) where t measures the time
since the action potential arrived at the synapse. The fu
tional form ofa(t) may thus be used to describe the effe
of synaptic transmission and/or passive dendritic conduct
with a(t)50 for t,0. The input to celli from other neu-
rons is then

I i
network~ t !5(

f , j
Ti j a„t2~ t j , f1tax!…Q„~ t j , f1tax!2t i ,l ~ t !….

~5!

The factorQ„(t j , f1tax)2t i ,l (t)… assures that currents due
previous synaptic inputs are reset to zero when neuroi
spikes,t i ,l (t) is the last firing time of neuroni beforet, and
Q(x) is the theta function, i.e.,Q(x)50 for x,0 and
Q(x)51 for x>0. The termtax denotes the axonal dela
from neuronj to neuroni. Unless stated otherwise, the ke
nelsa(t) are normalized according to

E
0

`

a~t!dt51 ~6!

so that the termsTi j are equivalent to the total integrate
synaptic strength from neuronj to neuroni.

In the following two sections we study the associati
capabilities of specific realizations of this general mod
First we consider systems with no oscillations of the ba
ground activity and with postsynaptic currents modeled asd-
pulses. We then turn to systems with periodic backgrou
oscillations and postsynaptic currents modeled as rectang
pulses or differences of two exponential functions.

III. MODEL WITH CONSTANT BACKGROUND ACTIVITY
AND FAST SYNAPTIC CURRENTS

To capture the effects of randomly impinging synap
inputs known to put cortical neurons close to firing thresh
under in vivo conditions@31#, all model neurons receive
constant positive background currentI i

external(t)5I B.0
which is slightly less than one so that without recurrent
further external input, the membrane potentials relax to
level below but close to the firing threshold, limt→`uuthresh
2ui(t)u5u12I Bu!1. Postsynaptic currents are approx
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3332 PRE 59R. MUELLER AND A. V. M. HERZ
mated byd-pulses which is justified if synaptic time con
stants are short compared to the membrane time consta

The kernelsa are thus given by

a~t!5d~t!. ~7!

Let us now investigate how such a system responds to
external stimulus pattern presented to the network at t
t050. We assume input patterns that raise the membr
potentials of some neurons above firing threshold wher
the membrane potentials of all other neurons remain at t
previous stationary valueI B . The set of neurons with posi
tive input is denoted byG0 .

The time evolution of the network can be readily und
stood by the following step-by-step consideration. All ne
rons within the groupG0 fire action potentials at timet0
50. Immediately afterwards, their membrane potentials
reset toui50. At time t5tax, the action potentials arrive a
the postsynaptic neurons. Due to the constant backgro
currentI i

external(t)5I B in Eq. ~2!, the membrane potentials o
all neurons in groupG0 have reached the valueu(tax

2)
5I B@12exp(2tax)# at that time. Neurons that did not fire a
time t050 still hover at the fixed pointu5I B .

If the axonal delaytax is large compared to one~the mem-
brane time constant!, all ui are thus again just below thresh
old. The arrival of the action potentials fired by neuronsj
PG0 at time t0 then triggers postsynaptic currents whi
instantaneously change the membrane potential of neuri
by ( j PG0

Ti j . For sufficiently largetax, neuroni will there-

fore fire at timeta if ( j PG0
Ti j .0 and will stay quiescent if

the sum is negative. Repeating this argument shows th
the timestk5ktax, wherekPN, certain setsGk of neurons
are active. If we denote a neuroni that is active byAi51 and
a neuron that stays quiescent byAi50, we obtain the
coupled-map dynamics

Ai~ tk11!5QS (
j

Ti j Aj~ tk! D with tk5ktax. ~8!

This time evolution is identical to the update rule of t
Little model @7# with a 0/1-representation. The result implie
that the group of neurons that fires action potentials at t
ktax in the integrate-and-fire model is thesamegroup that is
in the on-state (Ai51) in thekth iteration of a Little model
@7# with identical initial conditions~same groupG0 of neu-
rons withAi51 at timet0) and identical couplingsTi j .

It follows that both networks retrieve the same pattern a
that eventually the group of neurons which fire remains
changed. The duration of the transient phase depends o
number of patterns stored in the network and whether
dynamics relaxes to one of the stored patterns or to a sp
ous attractor@10–12#. Note that the Little model literally
reaches a fixed point, i.e., the activityAi of cell i approaches
a constant value, one or zero, whereas in the present net
the binary pattern is represented by atax-periodic firing pat-
tern.

In the above argument, a large axonal delaytax is re-
quired for two different reasons. First,tax@1 guarantees tha
a drop ofui due to a negative total recurrent input at tim
(k21)tax has decayed sufficiently by timektax, so thatui is
again just below threshold. Second, a large delay is also
.
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quired to ensure that the constant input currentI B has raised
the membrane potential sufficiently close to threshold
time ktax for a neuron which fired and was reset toui50 at
time (k21)tax. Note that the second requirement can
avoided for arbitrarytax by simply adding positive self-
couplingsTii 5I Bexp(2tax). This has been done in the nu
merical simulations.

It is known from analytical studies and numerical simu
tions that one can store an extensive number (p}N) of ran-
dom patternsjm in the Little model @10–12#. The critical
storage levelpc5acN is reached fora'0.14 @32#. To be
precise, this result holds for a Little~or Hopfield! model with
61-representation~‘‘on’’ 511, ‘‘off’’ 521) whose dy-
namics is given by

Si~ tk11!5sgnS (
j

Ti j Sj~ tk! D . ~9!

In the Little model, all neurons are updated in parallel, in t
Hopfield model@1#, Eq. ~9! is applied to only one neuron a
a time, chosen in a serial or random sequential order.

In both models, the synaptic weightsTi j are determined
by the Hebb rule,

Ti j 5N21 (
m51

p

j i
mj j

u for iÞ j , Tii 50, ~10!

the pattern componentsj i
m are chosen independently an

with equal probability from $21,1%, i.e., Prob(j i
m51)

5Prob(j i
m521)5 1

2 .
The critical storage levelac is defined by the condition

that the system remains near a stored pattern if it is init
ized with that pattern, i.e., the overlapmm(t),

mm~ t !5N21(
j

Sj~ t !j j
m , ~11!

remains at a value that is close to one for this particu
pattern. At the critical storage level,mc

m'0.97 so that about
1.5% of the bits of a pattern are flipped, i.e., not retriev
correctly @10–12#. Above ac , the system tends to relax t
states that are only vaguely reminiscent of the initial patte
mm'0.35. Strictly speaking, the phase transition atac oc-
curs only in the limitN→`, however, the qualitative chang
between the behavior belowac and aboveac can also be
seen in finite systems and may be used to determine
storage capacity in numerical studies: Belowac , the prob-
ability to remain near a stored pattern increases with sys
size, aboveac it decreases@33#. As in previous studies with
systems with two-state or graded-response neurons, we
use this phenomenon to determine the storage capacit
networks with integrate-and-fire neurons.

Integrate-and-fire neurons that do not fire do not have
influence on the state of the other model neurons. This
plied the 0/1-representation in Eq.~8!. However, most ana-
lytical results on the Little model have been obtained for
61-representation Eq.~9!. In order to compare the collectiv
dynamics of the present model with those results, we the
fore transform the61-representation into the 0/1 represe
tation by a change of variables,
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Ai5
1

2
~Si11!, Si52Ai21. ~12!

Inserting Eq.~12! into Eq. ~9! demonstrates that the tim
evolution ~9! is identical to the modified dynamics

Ai~ tk11!5QS (
j

Ti j Aj~ tk!2
1

2(j
Ti j D . ~13!

For patternsjm where the number of11’s balances exactly
the number of21’s, the term( jTi j vanishes if the Hebb
rule ~10! is used to determine theTi j . For random patterns
this is only true on average. Fluctuations from the mean
however, decrease the storage capacity of the model with
original dynamics~8!.

On the level of the macroscopic iteration equations th
are thus two major differences between the models; first,
occurrence of the terms( jTi j in Eq. ~13! as opposed to Eq
~8! and second, the idealization of long axonal delays
plicit in Eq. ~8!. We are interested in the effect of realist
axonal delays on the dynamics and not on the side effec
the terms( jTi j arising from a change of the representatio
used in the Little model. We therefore separate the two
fects by artificially balancing the second term in Eq.~13!
through an additional auxiliary neuroni 50. This cell is trig-
gered by the firing activity in the network that is receiv
after an axonal time delaytax so that the cell also spikes a
the timestk . The synaptic strengths from this neuron to
other cells areTi052 1

2 ( jTi j to provide the balance term i
Eq. ~13!.

For the numerical study of the retrieval quality,p5aN
unbiased61 random patternsjm were stored using the Heb
rule Eq.~10!. For given storage levela, averages from mul-
tiple realizations of networks with up to 2000 neurons we
analyzed. Each simulation consisted ofp runs in which the
dynamics was started in states that consecutively resem
each of the stored memories. Initial overlapsmm(0) less than
one were used to test the capability of the network to retri
a stored pattern from incomplete or noisy inputs. Up
reaching an attractor state, the overlap of the final state w
the corresponding memory was determined. In Figs. 1, 2,
5, these overlaps are represented by histograms that dis
the fraction of final states with given overlap with the orig
nal pattern, averaged over all patterns and realizations.
the reader’s convenience, the characteristic shape of
postsynaptic potential~PSP! in each simulation is shown a
an inset in the figures, together with a sketch of the ba
ground activityI external(t).

In Fig. 1 the behavior of the network is compared w
that of a Little model. The same storage levela50.145 is
chosen for both systems. In the Little model the bin with t
highest overlap (0.95,mm<1.00) slightly decreases with in
creasing system size and a peak atmm'0.35 develops, indi-
cating thata50.145 is already above the storage capacityac
of the Little model, in accordance with the literature. In t
present model the bin with highest overlap stays appro
mately constant and no peak atmm'0.3 develops, indicating
thatac'0.145. The storage capacity of the integrate-and-
model is thus slightly higher than that of the Little model.
similar conclusion can be drawn from simulations with in
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tial overlaps less than one corresponding to noisy input p
terns. As an example, results fora50.135 and initial overlap
m050.7 are shown in Fig. 2.

A systematic comparison of various simulations is pr
sented in Fig. 3. Here the fraction of final configurations w
an overlap larger than 0.9 is plotted as a function of t
initial overlaps. The simulations were performed for bo
models and storage levels below and above the storage
pacity of the Little model. The results demonstrate that
low storage levels, both models exhibit very similar colle
tive behavior. With increasing storage level, however, t
network with spiking neurons performs increasingly bet
than the Little model. Apart from this difference, the overa
similarity between the associative capabilities of both mod
is highly surprising if one takes into account that for th
simulations, the axonal delay was chosen to betax50.2, in-
stead oftax@1 required for the heuristic argument leading
Eq. ~8!.

Let us now try to understand the differences between b
models in detail. For the chosen value of the axonal del
tax50.2, the total negative recurrent input for neurons whi
did not fire at time (k21)tax has only decayed by 18.1% a
time ktax, far from the assumption of a 100% decrease
Eq. ~8!. Therefore higher positive recurrent input for such
neuron is needed to generate an action potential at timektax.

FIG. 1. Associative capability of the integrate-and-fire netwo
with constant background activity and fast synaptic currents~left!
and the Little model~right!. Shown are numerical results where th
network dynamics was initialized with one of the stored memo
patterns and then simulated until it reached a stationary state.
fraction of final states thus obtained is plotted as a function of
overlap with the initial memory pattern~in five-percentile bins!.
Data are averaged over all stored patterns and 20 realizations o
synaptic coupling matrix, error bars denote standard deviations.
networks consisted of 250 neurons~A!, ~B! or 2000 neurons~C!,
~D!. Comparison of~A! and ~C! shows distributions of final states
that are almost independent of system size, indicating that the s
age capacity of the network with spiking neurons is close toa
50.145, the storage level used in the simulations. In~B!, the frac-
tion of final states in the highest bin is lower than in~A! and de-
creases with increasing system size~D!. The growing peak atmm

'0.35 for the Little model indicates that its storage capacity
lower than 0.145, in accordance with the literature.
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This implies that neurons which do not fire in one iterati
have an increased tendency not to fire in the next cycle.

This effect is an advantage if a neuron is supposed to
quiescent in the desired memory pattern because it ad
larger noise levels induced by the presence of other me
ries and thus allows for a higher storage capacity. Howev
by the same token it is a disadvantage if the neuron is s
posed to be in the on-state. The simulation results reveal
the advantage is larger than the disadvantage. This phen
enon can be understood by considering that close to a st
pattern, most neurons ‘‘benefit’’ from the effect mention
above. For example, let us assume that the overlap wi
certain stored pattern ism50.6. In that case, about 80% o
the off-neurons are supposed to be off in the memory pat
~and thus have an advantage! but only about 20% of the off-
neurons are supposed to be on~and thus have a disadvan
tage!. Furthermore, if patterns have been learned using
Hebb rule~10!, the expected recurrent input to an off-neuro
in a stored pattern is negative whereas the expected recu
input to an on-neuron is positive. This implies that in a noi
pattern where some neurons are flipped the recurrent in
changes: flipped on-neurons received a negative input bu
absolute size of this negative input is generally less than
absolute size of the negative input an off-neuron receiv
that is not flipped. Therefore the effect of the advantage
again larger than the effect of the disadvantage.

A number of phenomena are intimately connected w
this difference between the two dynamics. First, it is w
known that in the Little model trajectories that start nea
stored pattern but end up in the peak atmm'0.35 show an
increasing overlap with the desired target pattern during
first iterations of the dynamics, before the overlap decrea
due to cross-talk from the other stored patterns@34#. Because

FIG. 2. Pattern completion in the integrate-and-fire netwo
with constant background activity and fast synaptic currents~left!
and the Little model~right!. The networks were initialized with
input patterns that were generated by randomly flipping 15% of
bits of each pattern, resulting in an initial overlapm050.7. Network
dynamics, numerical analysis, and representation of the data
otherwise as in Fig. 1. As shown by the simulations, run at a stor
level of a50.135, the network with spiking neurons has a high
noise tolerance than the Little model.
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of the effect mentioned above this phenomenon is less
nounced in the present model. Second, the average num
of iterations needed to reach a fixed point is smaller than
the Little model, in particular for slowly relaxing solutions
Third, the difference between the performance of the t
models increases with decreasing initial overlap and incre
ing storage level~see Fig. 3!.

As argued above, the increased performance of
present model is mainly due to the improved associative
havior of neurons that are supposed to be in the off-st
The latter can be observed directly by comparing the fr
tions of correctly retrieved off- and on-neurons. For t
Little model, the size of both fractions should be identic
~apart from statistical fluctuations! and be equal to the fina
overlap. Plotted against the final overlap, one would th
expect that data points scatter around the diagonal but w
out major differences between the off- and on- neurons. F
ure 4 shows that, as predicted, this is not the case for
present model: the fraction of correctly retrieved off-neuro
is significantly higher than that of on-neurons.

IV. MODEL WITH SUBTHRESHOLD OSCILLATION
AND LONG-LASTING POSTSYNAPTIC CURRENTS

Subthreshold membrane oscillations have been obse
in many brain regions and are prominent in the hippocam
@35–38#. Oscillation frequencies usually range from a fe
Hertz ~alpha waves! to 40-60 Hz~gamma waves!. Experi-
mental results suggest that under in vivo conditions cer
classes of neurons fire at most a few action potentials in
cycle @39#. The generation of action potentials occurs main

FIG. 3. Systematic comparison of pattern completion in
integrate-and-fire network with constant background activity a
fast synaptic currents~solid line! and the Little model~dashed line!.
Both systems consisted ofN51000 neurons. As a function of th
initial overlapm0 , the fraction of final configurations with an over
lap m`.0.9, averaged over all stored pattern and 20 realization
the coupling matrix, is plotted for three storage levels,a50.12~left
curves!, a50.14 ~middle curves!, anda50.16 ~right curves!. Ver-
tical bars denote standard deviations. The data show that for
storage levels, the spiking and nonspiking model exhibit alm
identical cooperative behavior. With increasing storage level
increasing initial overlap, the integrate-and-fire network perfor
increasingly better than the Little model.
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in the rising part of the oscillation@40#. Furthermore, de-
pending on the specific neurotransmitter, the duration
postsynaptic potentials may be of the same order as the
cillation period. This suggests that spike activity in one o
cillation cycle may generate postsynaptic potentials that
long enough to trigger action potentials far into the ne
cycle.

Within this paper we do not attempt to model a spec
brain region or experimental paradigm. We therefore o
incorporate the essence of these experimental findings
the model~2!–~6! and investigate whether the resulting sy
tem is again capable of functioning as a content-address
memory. To account for global subthreshold oscillations
the membrane potential in a minimal way, the tim
dependent part of the external input currentI external(t) in Eq.
~3! is taken to be a sine wave,

I external~ t !5I dc1I accos~vt !, ~14!

with periodP52p/v.
As in the preceding section, model parameters are cho

such that without input from other cells or external stimuli
neuron does not fire. The time evolution below the firi
threshold is described by Eq.~2!, a linear differential equa-
tion. One can therefore readily determine conditions t
guarantee subthreshold behavior.

Without feedback,I i(t) equalsI external(t), and for t→`
all neurons approach the synchronous oscillation

uosc~ t !5I dc1Acos~vt1f!, ~15!

FIG. 4. Difference in the behavior of firing and quiescent ne
rons in the integrate-and-fire network with constant background
tivity and fast synaptic currents (N52000,a50.135,m050.6).
Shown are the fractions of firing neurons~open squares! and quies-
cent neurons~open circles! in the final state as a function of th
overlap of the final state with the stored memory pattern, avera
over all stored pattern and 20 realizations of the coupling mat
The length of the vertical bars denotes one standard deviation
systems without symmetry breaking between on- and off-neur
such as the Little model, both fractions would be identical~apart
from statistical fluctuations! and be equal to the final overlap. Th
systematic deviations demonstrate the different dynamic role
firing and nonfiring cells in models with spiking neurons.
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where

A5A~ I ac,v!5I ac

1

A~11v2!
~16!

and

f5f~v!5arctan~v!. ~17!

For given amplitudeI ac and frequencyv of the oscillating
current, we thus choose the dc partI dc of the input current to
be slightly less than 12A(I ac,v), i.e., I dc.0 and u1
2A(I ac,v)2I dcu!1. Without loss of generality, we shift th
time axis and setf50 so that the maxima ofuosc(t) are
reached at timeskP with kPN.

Two different model variants will be investigated to stud
the dynamical effects of long-lasting postsynaptic curren
In the first variant, current pulses are approximated by re
angular pulses,

a~t!5Q~t!Q~tpsc2t!. ~18!

This choice implies that the change ofui due to a single
action potential generated by neuronj at timet is maximal in
amplitude at timet1tax1tpsc. Its sizeDui j at that time, as
derived from Eq.~2!, is

Dui j 5@12exp~2tpsc!#Ti j . ~19!

The simple shape of the current pulse admits an anal
treatment of the retrieval behavior of the network as will
shown below. However, this choice might be oversimplifie
For the second model variant, we therefore follow the lite
ture and use the difference of two exponentials as an ef
tive description for the time course of the postsynaptic c
rent @41#,

a~t!5a~t!5cFexpS 2
t

td
D2expS 2

t

t r
D GQ~t!. ~20!

The time constantt r is the rise time andtd is the decay time
of the postsynaptic current (td@t r). The constantc is cho-
sen such that the maximum ofa(t) equals one as in Eq
~18!. Both normalizations differ from Eq.~6! used in the
preceding section and are more convenient in the pre
context since they allow a direct comparison of systems w
different shapes and time constants of postsynaptic curre

To mimic the experimental observation that certa
classes of neurons mainly fire during the rising phase of
membrane oscillations, we consider parameter regimes s
that the model neurons only fire within an interval of leng
Dfire before the maximum of the oscillation, i.e., cannot rea
the threshold in the intervals„kP,(k11)P2Dfire…. Because
uosc(t)<uosc(Dfire) for tP„kP1Dfire ,(k11)P2Dfire…, the
constraint can be satisfied for arbitrary 0<I dc,12A in the
intervals „kP1Dfire ,(k11)P2Dfire… if even in the worst
case where some neuron receives maximal positive in
~19! the firing threshold is not reached at timekP2Dfire ,

max
i

S (
j

uTi j u D<
A

12exp~tpsc!
@12cos~vDfire!#. ~21!

-
c-
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This condition can be met without loss of generality by re
caling the synaptic weights,Ti j→gTi j , with an appropriate
scale factorg: this normalization has no effect on the tim
evolution of the Little model with which we want to compa
the dynamics of the present system.

To guarantee that neurons do not fire in the remain
intervals (kP,kP1Dfire#, two conditions have to be fulfilled
First, postsynaptic potentials due to action potentials ge
ated in earlier cycles should reach their maximum and trig
a spike before the oscillation maximum is reached at ti
kP. This can be achieved by properly adjusting the tim
constant of the postsynaptic current and the membrane
constant.

Second, postsynaptic currents due to action poten
generated in a given cycle should not trigger a neuron to
after the oscillation maximum. The sufficient~though non-
optimal! condition

tax52Dfire ~22!

will be used in some of the simulations. This constraint a
guarantees that neurons do not fire twice within a cycle, i
alizing the experimental finding that at most a few spikes
generated in one cycle@39# . Note that Eq.~22! can be easily
relaxed because long rise times of the postsynaptic pote
eliminate the possibility of multiple firings within one cycl
or firing after the maximum of the cycle. As in the previo
model we balance the second term in Eq.~13! by adding an
auxiliary spiking model neuroni 50 to the system. This cel
does not receive input from the other neurons. By choos
an increased input currentI dc for this neuron it will reach
threshold and fire at or slightly before the maxima of t
oscillation. The synaptic strengths from this cell to all oth
neurons are againTi0521/2 ( jTi j .

Let us now analyze the dynamics of networks with bloc
shaped postsynaptic currents~18!. The systems are initial
ized with input currents such that the membrane potential
a groupG0 of neurons are raised aboveuthreshat or slightly
before the maximum of an oscillation cycle, whereas
other neurons receive no external input.

Once the initial spikes are generated, the membrane
tentials of all neurons inG0 are reset to zero. At timetax,
i.e., after one axonal delay time, the action potentials ar
at the postsynaptic neurons and trigger rectangular cur
pulses with a durationtpsc that is chosen such that th
postsynaptic current lasts till the maximum of the next os
lation cycle.

By the timeDfire before the maximum of the next osci
lation cycle all the postsynaptic currents are sufficiently
tegrated, i.e.,Dui j 5Ti j 2e with arbitrarily smalle.0 if P is
long enough. Thus in the limit ofP@1, a postsynaptic neu
ron i will fire if ( j PG0

Ti j .0 and will stay quiescent if the
sum is negative.

Repeating this argument, we see that the groupGk of
neurons that generate action potentials in the time inte
Dfire before the maximum of thekth oscillation cycle is again
identical with the group of neurons that are in the on-state
the kth iteration of a Little model@7# with the same cou-
plings Ti j and initial activity pattern. This implies that as i
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the preceding section, all results obtained for the Lit
model regarding fixed points, convergence, and storage
pacity apply to the present model as well.

Note that a firing pattern in the present model consists
all neuronsi that generate action potentials (Si51 in the
Little model! within a time interval of fixed lengthDfire be-
fore the maximum of one cycle of the background oscil
tions. In general, these neurons will not fire at the same ti
because of variations in the recurrent input. This situat
differs from the model discussed in the preceding sect
where all active neurons fire in strict synchrony.

The equivalence of the present model with the Litt
model has now been proven for an ideal situation requi
for the mathematical analysis. To analyze the behavior of
network under more realistic conditions, numerical simu
tions with both block-shaped~18! and double-exponentia
postsynaptic currents~20! with physiologically realistic pa-
rameters were performed. With a membrane time constan
tRC515 ms, the values used correspond toP
5100 ms, td580 ms, t r51 ms, andtax53 ms.

Some of the results are shown in Fig. 5 and can be su
marized as follows. For periodsP that are long compared to
one ~the RC-time constant! and for long axonal delays~as
required for the analytic convergence proof!, systems with

FIG. 5. Associative capability of the integrate-and-fire netwo
with subthreshold oscillation and long-lasting postsynaptic curre
The simulations were performed in systems withN5400 neurons at
a storage level ofa50.135~A!, ~B!, ~C! anda50.1 ~D!. The initial
overlap with stored patterns wasm050.8. Shown are results from
systems with block-shaped~A!, ~C! and double-exponential~B!,
~D! postsynaptic currents, resulting in time courses for the posts
aptic potentials as depicted in the upper insets. Axonal delaystax

were either long~A!, ~B! or short ~C!, ~D! compared with the
RC-time constant which was normalized to one. The oscillati
period P was 6.67 and the amplitude of the oscillation was 0
Otherwise, network dynamics, numerical analysis, and data pre
tation are as in Fig. 1. Comparison of~A! with ~C! or ~B! with ~D!
demonstrates that the associative capabilities decrease with dec
ing axonal delay. This effect is less pronounced for block-shap
postsynaptic currents than for postsynaptic currents with a dou
exponential shape — in~A! and~C!, the same value fora has been
used, whereas in~D! it was lowered toa50.1 to obtain a distribu-
tion similar to that in~C!.
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PRE 59 3337CONTENT-ADDRESSABLE MEMORY WITH SPIKING NEURONS
rectangular or double-exponential postsynaptic currents
indeed have associative capabilities similar to the Li
model, as predicted by the theory.

If the axonal delay is reduced to a realistic value oftax
50.2 ~i.e., 3 ms!, the storage capacity of the model decrea
because neurons that fire more thantax before the oscillation
maximum may influence the firing behavior of other neuro
in the same cycle. The decrease of the storage capaci
larger for the model with double-exponential current sha
because the rise time to the maximum of the postsyna
potential is shorter than for the model with rectangu
postsynaptic current shape. Thus the above mentio
change in the membrane potential for the other neuron
larger. The size of the postsynaptic potential is also m
strongly influenced by the precise arrival time of the pres
aptic spike than in the model with rectangular current sha
This is not desirable because the system shows best pa
retrieval if the postsynaptic potentials have the same siz
the time of firing.

V. DISCUSSION

The present study demonstrates that model systems
integrate-and-fire neurons can be programmed to relax
appropriate initial conditions to periodic oscillations repr
senting stored memories. Two different mechanisms w
investigated in detail. In the first case, delayed feedb
within the network enforces neurons to generate action
tentials at integer multiples of the feedback delay. In
second case, periodic solutions are obtained through an
terplay of subthreshold oscillations and long-lasting posts
aptic potentials.

In both cases, the networks exhibit associative proper
similar to those of the Little model. The results demonstr
that although the microscopic time evolution of integra
and-fire neurons strongly differs from that of grade
response or binary neurons, the collective network dynam
may nevertheless be almost identical. On the level of m
roscopic order parameters and for stationary solutions, s
lar findings have been reported in the literature for syste
where the numberp of stored patterns scales logarithmica
with the numberN of neurons@19#. The current study reveal
that even at high storage levels (p}N) and during transien
relaxations, spiking and nonspiking systems can exh
strikingly similar cooperative phenomena.

Associative memory storage in a dynamical system
quires the existence of multiple attractors. In the mod
studied in this paper, attractors are imprinted using a H
bian learning rule in large networks. The attractors exh
the same simple temporal characteristics — periodic fir
patterns — but differ in their spatial structure. Howev
multistability can also arise in small neural systems wh
dynamics allows multiple attractors that differ in their tem
poral signature@42#. The two scenarios highlight two option
for generating multistability in neural networks: spatial ve
sus temporal complexity. The existence of multiple conc
rent rhythms in various brain structures@37# indicates that in
nature both mechanisms may operate in parallel. It wo
therefore be interesting to link both approaches and st
how complex spatiotemporal patterns can be stored at wi
o
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extended neural systems, and how synaptic noise influe
the emergent behavior of such systems.

With respect to oscillatory background activity, our fin
ings indicate that systems with spiking neurons, realistic
onal delays, and long-lasting postsynaptic currents may
lize subthreshold oscillations of their membrane potentials
function as content-addressable memories. Thus previous
proaches modeling the hippocampus as an associa
memory using highly simplified networks with two-sta
neurons and a discrete time evolution may be justified o
phenomenological level even if they do not capture ma
aspects of the microscopic dynamics.

Systems with subthreshold oscillations studied in this
per demonstrate another interesting feature. When these
works settle in a periodic activity pattern, the firing time of
neuron relative to the underlying oscillation varies from ne
ron to neuron, and depends on the attractor reached. C
correlations between the spike activity of one neuron and
subthreshold oscillation or between the firings of two ne
rons would indicate a temporal code where informati
about stored patterns is encoded in the fine temporal st
ture of neural activity. Indeed, these temporal patterns co
be used for further signal processing within the pres
scheme. However, these temporal phenomena do not
any functional role in the dynamic mechanism used for a
sociative memory storage of the networks analyzed her
the temporal fine structure is a mere epiphenomenon of
network dynamics. This observation provides a simple
ample that even measuring stimulus-dependent temporal
relations in neural systems cannot be used to verify t
those systems actually use the temporal domain to repre
stimulus properties.

The numerical simulations showed that various ideali
tions required for the mathematical analysis may be viola
without a significant decrease in the performance of the m
els as content-addressable memories. In particular, time
stants governing oscillation periods may be of the same o
as the membrane time constant. Let us mention in pas
that for the model with constant background activity and f
synaptic currents, the collective behavior remains qual
tively the same even for much smaller values oftax if one
arranges several networks without internal recurrent conn
tions in a staggered loop structure so that the output of
network serves as input to the subsequent network.

A study that is conceptually related to the present wo
shows that the dynamics of a Hopfield network@3# can be
implemented in a system with spiking neurons@43#. Through
a careful adjustment of the temporal characteristics
postsynaptic potentials, a neural code based on relative s
times can be accomplished. Apart from this difference in
representation of memory patterns, both studies aim at
same general goal: to realize the time evolution of one
namical system—the Hopfield model in@43# and the Little
model in the present paper—within the dynamical reperto
and constraints of a second system.

The success of the two approaches demonstrates tha
goal can indeed be accomplished. However, as indicate
the Introduction, this does not imply that biological neur
networks do indeed operate as content-addressable mem
in the way envisaged in both studies. Similar remarks ap
to theoretical studies about the dynamics and computatio
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capabilities of ‘‘synfire chains’’@13,14,17#. Nevertheless, al
these results are helpful in that they prove the principal f
sibility of associative pattern storage and retrieval in syste
with spiking neurons.
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