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Content-addressable memory with spiking neurons
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Time evolution and cooperative phenomena of networks with spiking model neurons are analyzed with
emphasis on systems that could be used as content-addressable memories. Stored memories are represented by
distributed patterns of neural activity where single cells either fire periodically or remain quiescent. Two
distinct mechanisms to generate relaxation behavior toward such periodic solutions are investigated: delayed
feedback and subthreshold oscillations. Using theoretical analysis and numerical simulations it is shown that in
both cases model networks with integrate-and-fire neurons possess storage capabilities similar to those of
conventional associative neural network31063-651X99)09202-9

PACS numbg(s): 87.10+e, 05.20-y, 07.05.Mh, 64.60.Cn

[. INTRODUCTION mechanisms. It is in this spirit that we investigate associative
capabilities of model networks with integrate-and-fire neu-
Recurrent neural networks may be programmed to funcrons.
tion as content-addressable memories that recover stored pat- This study focuses on systems in which stored binary
terns from incomplete or noisy inputs. To do so, correlationgnemories are represented by distributed patterns of neural
within patterns to be memorized are encoded in the synaptigctivity where single cells either fire periodicalhe “on”-
weights. By this procedure, multiple patterns can be impleState or remain completely quiescerithe “off”- state).
mented as fixed-point attractors of the network dynamicsTwo different mechanisms to achieve such behavior are in-
Starting from an initial state close to one of the stored attracvestigated in detail: delayed feedback within the model net-
tors, the system dynamics relaxes to this attractor and thuyork and externally generated subthreshold oscillations. We
retrieves the stored pattefi—3)]. demonstrate that both mechanisms give rise to collective
Various brain regions have been hypothesized to Opera@roperties that are almost identical with those of the Little
as content-addressable memories, for example, the CA3 r&odel [7], one of the classical attractor neural networks.
gion in the hippocampus and locally connected systems opince periodic membrane oscillations due to rhythmic back-
pyramidal cells in neocortical association ar¢as6]. Tra-  ground activity are typical for various brain regions, our re-
ditionally, these systems have been modeled using coarsé8ults indicate that such oscillations may play a beneficial role
grained dynamical descriptions based on short-time averagd@ content-addressable memory proces2. The results
firing rates. This approach leads either to models with con2lso show that although the microscopic time evolution of
tinuous time and real-valued state variablégraded- ~integrate-and-fire neurons strongly differs from that of
response neurons’[2,3] or to systems with discrete time 9raded-response neurons or binary neurons, the collective
and binary[1,7] or real-valued state variablé8,9]. Exten- network dynamics may nevertheless exhibit rather similar
sive theoretical results regarding the convergence propertigdienomena.
and storage capacity of such “attractor neural networks”
have been derivel0-12.
Most cortical neurons communicate using discrete pulses
of electrical activity, called “action potentials” or “spikes.” Biological neurons generate an action potential when their
Firing-rate models neglect this characteristic feature of neueell body (soma is sufficiently depolarized. The action po-
ral signals. It is, therefore, important to compare the collectential then propagates along the axon to synapses on the
tive properties of biologically more realistic approaches withdendritic trees of downstreafpostsynaptit neurons. When
those of the traditional network models. Previous studieshe action potential arrives at a synapse it initiates the release
have demonstrated that systems with spiking model neuronsf neurotransmitter which leads to a flow of ionic currents
offer computational possibilities not shared by models basethat depolarize or hyperpolarize the postsynaptic cell. De-
on firing rates such as computations based on relative spikgending on the integrated inputs from the many thousand
times[13-18. On the other hand, it has also been showncells a cortical neuron is typically connected with, the
that for stationary solutions, firing-rate descriptions cover gpostsynaptic neuron will in turn fire an action potential at
large class of networks with spiking model neur¢h$]. some later time and thus influence further neurons. Feedback
The apparent discrepancy between these two lines of rehrough recurrent connections results in complicated spa-
search is resolved if one realizes that results based on thmtemporal dynamics.
dynamics of specific models can only demonstrate the rich- Model neural networks are constructed to capture impor-
ness of phenomena generated by that very class of modeant features of these intricate dynamical processes. In order
Other models may or may not exhibit the same phenomenao allow for an analysis of the collective behavior of large
Results obtained with specific models are nevertheless exeedback networks, the microscopic dynamics has to be sim-
tremely useful to prove the feasibility of computational plified as much as possible. Individual neurons are therefore

Il. MODEL SYSTEMS
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often considered to be electrotonically compact. Within thisHere,t; ; with f € N are the times when neuromenerates an
class of model, “integrate-and-fire” neurof$6,21-29 are  action potential. The factax;(t; ;) takes thes contributions
characterized by a particularly simple description in that thementioned above into account and guarantees that the mem-
state of each neuron (1<i<N) is modeled by a single brane potential of cell is reset to zero.

dynamical variabley;, the membrane potential at the soma.  From a biological point of view, Eq4) describes a situ-

If the membrane potential; is below the firing threshold ation where ionic currents due to spike generation are so
Umreshy INtegrate-and-fire neurons operate as leaky integrastrong that they override any simultaneous input currents.
tors, Consistent with this picture, currents caused by previous syn-
aptic inputs will be set to zero when a cell emits an action
potential. Backpropagating action potentig®®] could pro-
vide a biophysical mechanism for this phenomenon in bio-
logical neurons. In order to properly formulate this charac-
teristic of the dynamics, let us now focus on the postsynaptic
effects of spike activity.

If, say, neuron spikes, an action potential travels along
its axon to other neurons. When it arrives at a synapse with
neuroni, neurotransmitter is released and triggers a postsyn-
aptic current in celi. The shape of the current resulting at
the soma is denoted by(7) where 7 measures the time
since the action potential arrived at the synapse. The func-
tional form of «(7) may thus be used to describe the effects
of synaptic transmission and/or passive dendritic conduction,
with a(7)=0 for 7<<0. The input to celi from other neu-
rons is then

du;(t)
dt

1
:_ﬁ[ui(t)_u0]+|i(t)- 1)
The capacitanc€ and the resistande of the cell membrane
determine the membrane time constagt=RC. In the ab-
sence of an input curremi(t), the membrane potential|(t)
approaches its rest valug.

Within the mathematical formulation, the temg/R can
be absorbed im;(t) and we will therefore focus on the case
Up=0 without loss of generality. By rescaling tinteand
input currentl;, the capacitanc€ and resistanc® can be
taken as one and we arrive at

du;(t)

dt

ui(t) +1i(t). 2
When the membrane potential of an integrate-and-fire model
neuron reaches the firing threshalg,..r, the cell generates
a uniform action potential modeled asdéapulse, and the
membrane potential is reset tQege< Uhresh The output of
an integrate-and-fire neuron is thus just a sequencé of the tactor®

pulses. _ , previous synaptic inputs are reset to zero when neliron
For convenience, units can be chosen such thats, spikes,t; (y is the last firing time of neuron beforet, and

=1 andu,es=0. Since the rgset is assumed to be instanta@(x) is the theta function, i.e.®(x)=0 for x<0 and
neous, the membrane potentigltakes two values when cell @(x)=1 for x=0. The termr,, denotes the axonal delay
| generates an action potential at timeWhere necessary, rom neuronj to neuroni. Unless stated otherwise, the ker-

these. two values_will be denoted hy(t™) and ui(tf). To nels a(r) are normalized according to
simplify the notation, temporal arguments otherwise always
)

Ii”etW°fK<t>=ij Tija— (4. 1+ 720)O (4 1+ Tad —i.i(1))-
(5)

((tj s+ 720 —ti,1()) @ssures that currents due to

refer to the time immediately prior to firing. Special care has
to be taken in systems witbrshaped input currents that may
cause a cell to generate an action potential at tiraeen if
immediately prior to that instant, its membrane potential is

a(r)dr=1 (6)

strictly below the firing threshold. In particular, a positive
input of the forml 5(t—1) will cause an action potential in a
subthreshold cell if =1—u;(t~). This example shows that

so that the termd;; are equivalent to the total integrated
synaptic strength from neurgrto neuroni.

In the following two sections we study the associative
capabilities of specific realizations of this general model.

in models with integrate-and-fire neurons one has to take theirst we consider systems with no oscillations of the back-

dynamical consequences éfshaped postsynaptic currents
into careful consideration.

ground activity and with postsynaptic currents modeled-as
pulses. We then turn to systems with periodic background

The reset process can be formally included in the timepscillations and postsynaptic currents modeled as rectangular

evolution (2) by an additional effective current®®" that
guarantees that the membrane potentiais reset to zero
immediately after neurongenerates an action potential. De-
noting input currents to cellfrom other neurons in the mod-
eled network byl ™™™ and input currents due to external
stimuli and background activity by we get

Ii(t):Iinetworlit)_i_Ifxterna{t)_}_liresett), (3)

where

Iiresett):_z ui(tijf)ﬁ(t—ti'f). (4)

pulses or differences of two exponential functions.

IIl. MODEL WITH CONSTANT BACKGROUND ACTIVITY
AND FAST SYNAPTIC CURRENTS

To capture the effects of randomly impinging synaptic
inputs known to put cortical neurons close to firing threshold
underin vivo conditions[31], all model neurons receive a
constant positive background curredf**™t)=1,>0
which is slightly less than one so that without recurrent or
further external input, the membrane potentials relax to a
level below but close to the firing threshold, lin.|Uiresh
—u;(t)|=|1—-15/<1. Postsynaptic currents are approxi-
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mated by §-pulses which is justified if synaptic time con- quired to ensure that the constant input curignhbas raised
stants are short compared to the membrane time constant.the membrane potential sufficiently close to threshold by

The kernelsa are thus given by time k7, for a neuron which fired and was resetug=0 at
time (k—1)7,. Note that the second requirement can be
a(r)=48(7). (7)  avoided for arbitraryr,, by simply adding positive self-

Let us now investigate how such a system responds to a%oupllnggTii = Bexp(— 7). This has been done in the nu-
merical simulations.

external stimulus pattern presented to the network at time

. . It is known from analytical studies and numerical simula-
to=0. We assume input patterns that raise the membrang . f
otentials of some neurons above firing threshold whereat ons that one can store an extensive numipseN) o ran-
b om patternsé” in the Little model[10-12. The critical

the r_nembran_e potentials of all other neurons remain at t_helstorage levelp,— a,N is reached fore~0.14 [32]. To be

previous stationary valubs. The set of neurons with posi- : ; : ; :

tive input is denoted by, precise, this result holds for a Littler Hopfield model with

. 4+ 1. : 13 L E— [ k) [ -

The time evolution of the network can be readily under-;a}”nfsprigsicg“%m on +1, Yoff 1) whose dy

stood by the following step-by-step consideration. All neu- 9 y

rons within the groupG, fire action potentials at time,

=0. Immediately afterwards, their membrane potentials are Si(tkﬂ):sgr(z Tiij(tk)). 9

reset tou; =0. At time t= 7,,, the action potentials arrive at ]

the postsynaptic neurons. Due to the constant backgrounld the Littl del. all dated i llel. in th
currentl &M t) = 5 in Eq. (2), the membrane potentials of h the Litlie modet, all neurons are updated in parallél, in the

all neurons in groupG, have reached the value(r.) Hopfield model1], Eq. (9) is applied to only one neuron at

_ ) . : a time, chosen in a serial or random sequential order.
tTnLBe[tl:gxg& ﬁg\}e?t;'??r:emf?fé stgirr%n—s Ithat did notfire at =, oy, models, the synaptic weights; are determined

0~ . B by the Hebb rule,

If the axonal delayr,, is large compared to or{¢he mem- y
brane time constaptall u; are thus again just below thresh- p
old. The arrival of the action potentials fired by neurgns T”-:N*lz ff‘f}' for i#j, T;=0, (10)
e Gy at time ty then triggers postsynaptic currents which w=1
instantaneously change the membrane potential of neiuron )
by = .,Tij - For sufficiently larger,y, neuroni will there-  the pattem componentg’” are chosen independently and
fore fire at timer, if £;.¢,Ti;>0 and will stay quiescent if W'tph E?gllial p:rlc))balb”'ty from{-1,1, ie., Prob§’=1)
; ; : - =Prob¢=-1)=5.

the sum is negative. Repeating this argument shows that at - 2 . . .

. g D g g The critical storage levek, is defined by the condition

the timest,=kr,, Whereke N, certain setss, of neurons . PO
are active. If we denote a neurthat is active by, =1 and that the system remains near a stored pattern if it is initial-
' ! ized with that pattern, i.e., the overlap”(t),

a neuron that stays quiescent B=0, we obtain the
coupled-map dynamics

mA()=N"12 (D&, (11)
Ai(ti:1)=0 :

> TijAj(tk)) with ty=kry. (8
: remains at a value that is close to one for this particular
This time evolution is identical to the update rule of the pattern. At the critical storage levehi~0.97 so that about
Little model[7] with a O/1-representation. The result implies 1.5% of the bits of a pattern are flipped, i.e., not retrieved
that the group of neurons that fires action potentials at timeorrectly [10—-12. Above «., the system tends to relax to
k74 in the integrate-and-fire model is tkamegroup that is  states that are only vaguely reminiscent of the initial pattern,
in the on-state 4;=1) in thekth iteration of a Little model m#~0.35. Strictly speaking, the phase transitionagtoc-
[7] with identical initial conditions(same group5, of neu-  curs only in the limitN— oo, however, the gualitative change
rons withA;=1 at timet) and identical couplingdj; . between the behavior below, and abovea. can also be

It follows that both networks retrieve the same pattern andseen in finite systems and may be used to determine the
that eventually the group of neurons which fire remains unstorage capacity in numerical studies: Belay, the prob-
changed. The duration of the transient phase depends on théility to remain near a stored pattern increases with system
number of patterns stored in the network and whether theize, abover, it decrease$33]. As in previous studies with
dynamics relaxes to one of the stored patterns or to a spursystems with two-state or graded-response neurons, we will
ous attractof10-12. Note that the Little model literally use this phenomenon to determine the storage capacity of
reaches a fixed point, i.e., the activily of cell i approaches networks with integrate-and-fire neurons.
a constant value, one or zero, whereas in the present network Integrate-and-fire neurons that do not fire do not have any
the binary pattern is represented by aperiodic firing pat- influence on the state of the other model neurons. This im-
tern. plied the 0/1-representation in E(). However, most ana-

In the above argument, a large axonal delgy is re- lytical results on the Little model have been obtained for the
quired for two different reasons. First,,>1 guarantees that =+ 1-representation Eq9). In order to compare the collective
a drop ofu; due to a negative total recurrent input at time dynamics of the present model with those results, we there-
(k—1) 7, has decayed sufficiently by tiner,,, so thatu; is  fore transform the+ 1-representation into the 0/1 represen-
again just below threshold. Second, a large delay is also re@ation by a change of variables,
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rule (10) is used to determine th'é,J For random patterns, = 061 oL %81 o
this is only true on average. Fluctuations from the mean dog 047 oy 1.0 047 my:1.0
however, decrease the storage capacity of the model with trs 024 N :2000 024 NN :2000
original dynamicq8). 0 e 0l
0 02 04 06 08 1 0 02 04 06 08 1
On the level of the macroscopic iteration equations there Final overlap Fival overiap

are thus two major differences between the models; first, the

occurrence of the terms; T;; in Eq. (13) as opposed to Eq. FIG. 1. Associative capability of the integrate-and-fire network
(8) and second, the idealization of long axonal delays im-with constant background activity and fast synaptic curreélets)

plicit in Eq. (8). We are interested in the effect of realistic and the Little model{right). Shown are numerical results where the
axonal delays on the dynamics and not on the side effect gfetwork dynamics was initialized with one of the stored memory
the termsE T arising from a change of the representationspatterns and then simulated until it reached a stationary state. The
used in the thtle model. We therefore separate the two effraction of final states thus obtained is plotted as a function of the
fects by artificially balancing the second term in EG3) overlap with the initial memory pattertin five- percent!le t_)m)s
through an additional auxiliary neurdr: 0. This cell is trig- Data are avera_lged over all stored patterns and 20 reallzgtl_ons of the
gered by the firing activity in the network that is received synaptic coupllpg matrix, error bars denote standard deviations. The
after an axonal time delay,, so that the cell also spikes at NeWOrks consisted of 250 neurofs), (B) or 2000 neurongC),

the timest,. The synaptic strengths from this neuron to all (2): ©omparison ofA) and (C) shows distributions of final states
1 . . that are almost independent of system size, indicating that the stor-
other cells arélj,=—;X;T;; to provide the balance term in

age capacity of the network with spiking neurons is closexto
Eq. (13. ge capacity piking

. . Lo =0.145, the storage level used in the simulations(Bj the frac-
For the numerical study of the retrieval qualify=aN tion of final states in the highest bin is lower than(i) and de-

unbiased* 1 random patterng" were stored using the Hebb reases with increasing system si@. The growing peak atn*
rule Eq.(10). For given storage levet, averages from mul- <0 35 for the Little model indicates that its storage capacity is
tiple realizations of networks with up to 2000 neurons wer€lgwer than 0.145, in accordance with the literature.
analyzed. Each simulation consistedpfuns in which the
dynamics was started in states that consecutively resembleil overlaps less than one corresponding to noisy input pat-
each of the stored memories. Initial overlap$(0) less than terns. As an example, results fer=0.135 and initial overlap
one were used to test the capability of the network to retrieven,=0.7 are shown in Fig. 2.
a stored pattern from incomplete or noisy inputs. Upon A systematic comparison of various simulations is pre-
reaching an attractor state, the overlap of the final state witeented in Fig. 3. Here the fraction of final configurations with
the corresponding memory was determined. In Figs. 1, 2, andn overlap larger than 0.9 is plotted as a function of the
5, these overlaps are represented by histograms that displayitial overlaps. The simulations were performed for both
the fraction of final states with given overlap with the origi- models and storage levels below and above the storage ca-
nal pattern, averaged over all patterns and realizations. Fgracity of the Little model. The results demonstrate that for
the reader's convenience, the characteristic shape of thHew storage levels, both models exhibit very similar collec-
postsynaptic potentigPSP in each simulation is shown as tive behavior. With increasing storage level, however, the
an inset in the figures, together with a sketch of the backnetwork with spiking neurons performs increasingly better
ground activityl ©®M3(t). than the Little model. Apart from this difference, the overall
In Fig. 1 the behavior of the network is compared with similarity between the associative capabilities of both models
that of a Little model. The same storage lewet+0.145 is  is highly surprising if one takes into account that for the
chosen for both systems. In the Little model the bin with thesimulations, the axonal delay was chosen tore=0.2, in-
highest overlap (0.98m*<1.00) slightly decreases with in- stead ofr,,>1 required for the heuristic argument leading to
creasing system size and a peakrét~0.35 develops, indi- Eq. (8).
cating thate=0.145 is already above the storage capaejty Let us now try to understand the differences between both
of the Little model, in accordance with the literature. In themodels in detail. For the chosen value of the axonal delay,
present model the bin with highest overlap stays approxir,=0.2, the total negative recurrent input for neurons which
mately constant and no peakrat'~0.3 develops, indicating did not fire at time k— 1) 7., has only decayed by 18.1% at
thata~0.145. The storage capacity of the integrate-and-firdime kr,,, far from the assumption of a 100% decrease in
model is thus slightly higher than that of the Little model. A Eq. (8). Therefore higher positive recurrent input for such a
similar conclusion can be drawn from simulations with ini- neuron is needed to generate an action potential atkinge
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FIG. 3. Systematic comparison of pattern completion in the
FIG. 2. Pattern completion in the integrate-and-fire networkintegrate-and-fire network with constant background activity and

with constant background activity and fast synaptic currélefs)  fast synaptic currentsolid line) and the Little mode{dashed ling
and the Little model(right). The networks were initialized with Both systems consisted &f=1000 neurons. As a function of the
input patterns that were generated by randomly flipping 15% of thdnitial overlapm,, the fraction of final configurations with an over-
bits of each pattern, resulting in an initial overlag=0.7. Network  lapm..>0.9, averaged over all stored pattern and 20 realizations of
dynamics, numerical analysis, and representation of the data atBe coupling matrix, is plotted for three storage levels;0.12(left
otherwise as in Fig. 1. As shown by the simulations, run at a storagéurves, «=0.14(middle curvey anda=0.16 (right curves. Ver-
level of «=0.135, the network with spiking neurons has a highertical bars denote standard deviations. The data show that for low
noise tolerance than the Little model. storage levels, the spiking and nonspiking model exhibit almost

identical cooperative behavior. With increasing storage level and

increasing initial overlap, the integrate-and-fire network performs

This implies that neurons which do not fire in one iterationincreasing|y better than the Little model.

have an increased tendency not to fire in the next cycle.

This effect is an advantage if a neuron is supposed to bgf the effect mentioned above this phenomenon is less pro-
quiescent in the desired memory pattern because it admitgounced in the present model. Second, the average number
larger noise levels induced by the presence of other memg jterations needed to reach a fixed point is smaller than in
ries and thus allows for a higher storage capacity. Howevelne Little model, in particular for slowly relaxing solutions.
by the same token it is a disadvantage if the neuron is suprhijrq, the difference between the performance of the two

posed to be in the on-state. The simulation results reveal th@kodels increases with decreasing initial overlap and increas-
the advantage is larger than the disadvantage. This phenony storage leve(see Fig. 3

enon can be understood by considering that close to a stored A5 argued above, the increased performance of the

pattern, most neurons “benefit” from the effect mentioned yresent model is mainly due to the improved associative be-
above. For example, let us assume that the overlap with Rayior of neurons that are supposed to be in the off-state.
certain stored pattern i=0.6. In that case, about 80% of The |atter can be observed directly by comparing the frac-
the off-neurons are supposed to be off in the memory patterfions of correctly retrieved off- and on-neurons. For the
(and thus have an advantadmit only about 20% of the off- | jttle model, the size of both fractions should be identical
neurons are supposed to be @nd thus have a disadvan- (apart from statistical fluctuationgnd be equal to the final
tage. Furthermore, if patterns have been learned using thgyerlap. Plotted against the final overlap, one would thus
Hebb rule(10), the expected recurrent input to an off-neuronexpect that data points scatter around the diagonal but with-
in a stored pattern is negative whereas the expected recurreit major differences between the off- and on- neurons. Fig-
input to an on-neuron is positive. This implies that in a noisyyre 4 shows that, as predicted, this is not the case for the
pattern where some neurons are flipped the recurrent inpyresent model: the fraction of correctly retrieved off-neurons

changes: flipped on-neurons received a negative input but the significantly higher than that of on-neurons.
absolute size of this negative input is generally less than the

absolute size of the negative input an off-neuron received
that is not flipped. Therefore the effect of the advantage is
again larger than the effect of the disadvantage.

A number of phenomena are intimately connected with Subthreshold membrane oscillations have been observed
this difference between the two dynamics. First, it is wellin many brain regions and are prominent in the hippocampus
known that in the Little model trajectories that start near g35-3§. Oscillation frequencies usually range from a few
stored pattern but end up in the peakn@t~0.35 show an Hertz (alpha wavesto 40-60 Hz(gamma waves Experi-
increasing overlap with the desired target pattern during thenental results suggest that under in vivo conditions certain
first iterations of the dynamics, before the overlap decreasadasses of neurons fire at most a few action potentials in one
due to cross-talk from the other stored pattd8¥. Because cycle[39]. The generation of action potentials occurs mainly

IV. MODEL WITH SUBTHRESHOLD OSCILLATION
AND LONG-LASTING POSTSYNAPTIC CURRENTS
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1 where
A=A(l ;c,0) =1 ! (16)
= ,w = —_—
t_>c ac ac\/m
2 095 |
B and
[5]
o
g ¢=¢(w)=arctaw). 17
s
.,% 09 L For given amplitudd ,. and frequencyw of the oscillating
= T current, we thus choose the dc phytof the input current to
] lHli - off nowrons be slightly less than +A(l,.®), ie., 14&>0 and |1
;Igj f = on neurons —A(l 50, ) — 1 4d < 1. Without loss of generality, we shift the
; IET%E time axis and setp=0 so that the maxima ofi,;{t) are
085 ;5 S o5 oos 1 reached at timekP with ke N.

Two different model variants will be investigated to study
the dynamical effects of long-lasting postsynaptic currents.
FIG. 4. Difference in the behavior of firing and quiescent neu-In the first variant, current pulses are approximated by rect-
rons in the integrate-and-fire network with constant background acangular pulses,
tivity and fast synaptic currentsNE= 2000, =0.135,my=0.6).
Shown are the fractions of firing neurofspen squargsand quies- a(1)=0(7)O(Tpsc— 7). (18
cent neurongopen circleg in the final state as a function of the
overlap of the final state with the stored memory pattern, averagedhis choice implies that the change of due to a single
over all stored pattern and 20 realizations of the coupling matrixaction potential generated by neusoat timet is maximal in
The length of the vertical bars denotes one standard deviation. lamplitude at time + 7,,+ 7psc. Its sizeAu;; at that time, as
systems without symmetry breaking between on- and off-neuronsjerived from Eq(2), is
such as the Little model, both fractions would be identi@gart

Final overlap

from statistical fluctuationsand be equal to the final overlap. The Aujj=[1—exp— 75 I Tjj - (19
systematic deviations demonstrate the different dynamic roles of
firing and nonfiring cells in models with spiking neurons. The simple shape of the current pulse admits an analytic

treatment of the retrieval behavior of the network as will be
in the rising part of the oscillatiofi40]. Furthermore, de- shown below. However, this choice might be oversimplified.

pending on the specific neurotransmitter, the duration ofor the second model variant, we therefore follow the litera-
postsynaptic potentials may be of the same order as the otire and use the difference of two exponentials as an effec-
long enough to trigger action potentials far into the next

cycle.

y O(r). (20
incorporate the essence of these experimental findings intPbhe time constant, is the rise time andy is the decay time
the model(2)—(6) and investigate whether the resulting sys-of the postsynaptic current{>r,). The constant is cho-
the membrane potential in a minimal way, the time-preceding section and are more convenient in the present
dependent part of the external input curréfft*™(t) in Eq.  context since they allow a direct comparison of systems with

cillation period. This suggests that spike activity in one os-tive description for the time course of the postsynaptic cur-
cillation cycle may generate postsynaptic potentials that lastent[41],
_ _ T T
Within this paper we do not attempt to model a specific a(r)=a(r)=c exg - Y e
brain region or experimental paradigm. We therefore only
tem is again capable of functioning as a content-addressabi®n such that the maximum af(7) equals one as in Eq.
memory. To account for global subthreshold oscillations of(18). Both normalizations differ from Eq(6) used in the

(3) is taken to be a sine wave, different shapes and time constants of postsynaptic currents.
To mimic the experimental observation that certain

[eXemndt) =, +1,£09 wt), (14) classes of neurons mainly fire during the rising phase of the

membrane oscillations, we consider parameter regimes such
with period P= 27/ w. that the model neurons only fire within an interval of length

As in the preceding section, model parameters are chosdire Pefore theT maximum of the oscillation, i.e., cannot reach
such that without input from other cells or external stimuli, athe threshold in the intervalP, (k+1)P—Dye). Because
neuron does not fire. The time evolution below the firingU” () <U**{Djye) for te (kP+Dyye,(k+1)P—Dpre), the
threshold is described by E(), a linear differential equa- Cconstraint can be satisfied for arbitrary<0y.<1—A in the
tion. One can therefore readily determine conditions thatntervals (kP+Dype,(k+1)P—Dye) if even in the worst
guarantee subthreshold behavior. case where some neuron receives maximal positive input

Without feedback];(t) equalsl®®™{t), and fort—soc (19) the firing threshold is not reached at tik®— Dy,
all neurons approach the synchronous oscillation

A
Tl | ST —axy - 1™ wDyge)]. (21
u%sqt) =14+ Acog wt+ ¢), (15) mia><§j:| J|) 1_eXp(Tpsc)[ cogwDyre)]. (21)
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This condition can be met without loss of generality by res-A B
caling the synaptic weightd,; — yT;;, with an appropriate ,, 1
scale factory: this normalization has no effect on the time § o8] PSP /TN o8] PSP [T
evolution of the Little model with which we want to compare s gg| %e=t: N\ 06 Uest:
the dynamics of the present system. 5 Taz = 3.33 Tas = 3.33
. . .. 2049 :0.135 044 «:0.135

To guarantee that neurons do not fire in the remainincg Mo 0.8 Mo : 0.8
intervals kP,kP+ Dgye], two conditions have to be fulfilled. & °*] ~:400 021 N 400
First, postsynaptic potentials due to action potentials genel  °5 33 07 06 08 | e

ated in earlier cycles should reach their maximum and trigge

a spike before the oscillation maximum is reached at time™

kP. This can be achieved by properly adjusting the timeg | pgp. e

constant of the postsynaptic current and the membrane tins °° e

constant. o8] ",
Second, postsynaptic currents due to action potential? 041 «:0.135

generated in a given cycle should not trigger a neuron to fir(;% 02 %0.:4%08

after the oscillation maximum. The sufficiethough non- & :

0 PEE X T

optima) condition 0 02 04 06 08 1 0 02 04 06 08 1
Final overlap Final overlap

of final

FIG. 5. Associative capability of the integrate-and-fire network
Tax= 2Dfire (22 with subthreshold oscillation and long-lasting postsynaptic currents.
The simulations were performed in systems Witk 400 neurons at
a storage level ot =0.135(A), (B), (C) anda=0.1(D). The initial
will be used in some of the simulations. This constraint alscoverlap with stored patterns wag,=0.8. Shown are results from
guarantees that neurons do not fire twice within a cycle, idesystems with block-shape), (C) and double-exponentigB),
alizing the experimental finding that at most a few spikes aréD) postsynaptic currents, resulting in time courses for the postsyn-
generated in one cyc[@9] . Note that Eq(22) can be easily aptic potentials as depicted in the upper insets. Axonal detgys
relaxed because long rise times of the postsynaptic potentialere either long(A), (B) or short (C), (D) compared with the
eliminate the possibility of multiple firings within one cycle RC-time constant which was normalized to one. The oscillation
or firing after the maximum of the cycle. As in the previous Period P was 6.67 and the amplitude of the oscillation was 0.4.
model we balance the second term in Etp) by adding an Otherwise, network dynamics, numerical analysis, and data presen-

auxiliary spiking model neuron=0 to the system. This cell tation are as in Fig. 1. Comparison @) with (C) or (B) with (D)

does not receive input from the other neurons. By Choosinqijemonstrates that the associative capabilities decrease with decreas-
' g axonal delay. This effect is less pronounced for block-shaped

an increased input currem. for this neuron it will reach . ) .
h . - postsynaptic currents than for postsynaptic currents with a double
threshold and fire at or slightly before the maxima of the . .

o X . exponential shape — i(A) and(C), the same value for has been
oscillation. The synaptic strengths from this cell to all otheruseol whereas ifD) it was lowered tax=0.1 to obtain a distribu-
neurons are agaifo=—1/2%;T;; . _ tion similar to that in(C).

Let us now analyze the dynamics of networks with block-
shaped postsynaptic currentsd). The systems are initial- he preceding section, all results obtained for the Little
ized with input currents such that the membrane potentials gf,qde| regarding fixed points, convergence, and storage ca-
a groupG, of neurons are ralsed_ ab_omq]reshat or slightly pacity apply to the present model as well.
before the maximum of an oscillation cycle, whereas the Note that a firing pattern in the present model consists of

other neurons receive no external input. all neuronsi that generate action potential§ €1 in the
Once the initial spikes are generated, the membrane pQitie mode) within a time interval of fixed lengthd g, be-
tentials of all neurons iG, are reset to zero. At times.,  fore the maximum of one cycle of the background oscilla-

i.e., after one axonal delay time, the action potentials arrivgjons. |n general, these neurons will not fire at the same time
at the postsynaptic neurons and trigger rectangular currepfecayse of variations in the recurrent input. This situation
pulses with a durationry that is chosen such that the giffers from the model discussed in the preceding section
postsynaptic current lasts till the maximum of the next oscil-yhere all active neurons fire in strict synchrony.
lation cycle. . _ The equivalence of the present model with the Little
By the time Dy before the maximum of the next oscil- model has now been proven for an ideal situation required
lation cycle all the postsynaptic currents are sufficiently in-for the mathematical analysis. To analyze the behavior of the
tegrated, i.e. Auj;=T;;— e with arbitrarily smalle>0 if Pis  network under more realistic conditions, numerical simula-
long enough. Thus in the limit dP>1, a postsynaptic neu- tjons with both block-shapedl8) and double-exponential
roni will fire if ;_c Ti;>0 and will stay quiescent if the postsynaptic current&20) with physiologically realistic pa-
sum is negative. rameters were performed. With a membrane time constant of
Repeating this argument, we see that the gr@pof  7rc=15 ms, the values wused correspond t®
neurons that generate action potentials in the time interva=100 ms, 74=80 ms, 7,=1 ms, andr,=3 ms.
Dy before the maximum of thieth oscillation cycle is again Some of the results are shown in Fig. 5 and can be sum-
identical with the group of neurons that are in the on-state irmarized as follows. For period3 that are long compared to
the kth iteration of a Little model7] with the same cou- one (the RC-time constantand for long axonal delay&@s
plings T;; and initial activity pattern. This implies that as in required for the analytic convergence prpagystems with
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rectangular or double-exponential postsynaptic currents dextended neural systems, and how synaptic noise influences
indeed have associative capabilities similar to the Littlethe emergent behavior of such systems.
model, as predicted by the theory. With respect to oscillatory background activity, our find-

If the axonal delay is reduced to a realistic valuergf  ings indicate that systems with spiking neurons, realistic ax-
=0.2(i.e., 3 mg, the storage capacity of the model decreasesnal delays, and long-lasting postsynaptic currents may uti-
because neurons that fire more thgpbefore the oscillation  |ize subthreshold oscillations of their membrane potentials to
maximum may influence the firing behavior of other neuronsynction as content-addressable memories. Thus previous ap-
in the same cycle. The decrease of the storage capacity b?oaches modeling the hippocampus as an associative
larger for the modgl with double—e.xponential current Shapﬁnemory using highly simplified networks with two-state
because the rise time to the maximum of the postsynaplife rons and a discrete time evolution may be justified on a
potential is shorter than for the model with reCtangUIarphenomenologicaI level even if they do not capture major
postsyngptic current shape. Thus the above mentionggspects of the microscopic dynamics.
change in the membrane potential for the other neurons is gy tems with subthreshold oscillations studied in this pa-
larger. The size of the postsynaptic potential is also Morgyer gemonstrate another interesting feature. When these net-
strongly influenced by the precise arrival time of the presyny, o5 settle in a periodic activity pattern, the firing time of a
appc_sp|ke thar_l in the model with rectangular current shape,q ;ron relative to the underlying oscillation varies from neu-
This is not desirable because the system shows best patteif}, o neuron, and depends on the attractor reached. Cross-
retrieval if the postsynaptic potentials have the same size qlyrre|ations between the spike activity of one neuron and the

the time of firing. subthreshold oscillation or between the firings of two neu-
rons would indicate a temporal code where information
about stored patterns is encoded in the fine temporal struc-
ture of neural activity. Indeed, these temporal patterns could
be used for further signal processing within the present
The present study demonstrates that model systems wittcheme. However, these temporal phenomena do not play
integrate-and-fire neurons can be programmed to relax faany functional role in the dynamic mechanism used for as-
appropriate initial conditions to periodic oscillations repre-sociative memory storage of the networks analyzed here—
senting stored memories. Two different mechanisms weréhe temporal fine structure is a mere epiphenomenon of the
investigated in detail. In the first case, delayed feedbacketwork dynamics. This observation provides a simple ex-
within the network enforces neurons to generate action poample that even measuring stimulus-dependent temporal cor-
tentials at integer multiples of the feedback delay. In therelations in neural systems cannot be used to verify that
second case, periodic solutions are obtained through an ithose systems actually use the temporal domain to represent
terplay of subthreshold oscillations and long-lasting postsynstimulus properties.
aptic potentials. The numerical simulations showed that various idealiza-
In both cases, the networks exhibit associative propertiegons required for the mathematical analysis may be violated
similar to those of the Little model. The results demonstratewithout a significant decrease in the performance of the mod-
that although the microscopic time evolution of integrate-els as content-addressable memories. In particular, time con-
and-fire neurons strongly differs from that of graded-stants governing oscillation periods may be of the same order
response or binary neurons, the collective network dynamicas the membrane time constant. Let us mention in passing
may nevertheless be almost identical. On the level of macthat for the model with constant background activity and fast
roscopic order parameters and for stationary solutions, simsynaptic currents, the collective behavior remains qualita-
lar findings have been reported in the literature for systemsively the same even for much smaller valuesgf if one
where the numbep of stored patterns scales logarithmically arranges several networks without internal recurrent connec-
with the numbeN of neurong19]. The current study reveals tions in a staggered loop structure so that the output of one
that even at high storage levelgfN) and during transient network serves as input to the subsequent network.
relaxations, spiking and nonspiking systems can exhibit A study that is conceptually related to the present work
strikingly similar cooperative phenomena. shows that the dynamics of a Hopfield netwd8 can be
Associative memory storage in a dynamical system reimplemented in a system with spiking neurdd8]. Through
quires the existence of multiple attractors. In the modelsa careful adjustment of the temporal characteristics of
studied in this paper, attractors are imprinted using a Hebpostsynaptic potentials, a neural code based on relative spike
bian learning rule in large networks. The attractors exhibittimes can be accomplished. Apart from this difference in the
the same simple temporal characteristics — periodic firingepresentation of memory patterns, both studies aim at the
patterns — but differ in their spatial structure. However,same general goal: to realize the time evolution of one dy-
multistability can also arise in small neural systems whosaamical system—the Hopfield model j43] and the Little
dynamics allows multiple attractors that differ in their tem- model in the present paper—within the dynamical repertoire
poral signatur¢42]. The two scenarios highlight two options and constraints of a second system.
for generating multistability in neural networks: spatial ver- The success of the two approaches demonstrates that this
sus temporal complexity. The existence of multiple concur-goal can indeed be accomplished. However, as indicated in
rent rhythms in various brain structurg®/] indicates that in  the Introduction, this does not imply that biological neural
nature both mechanisms may operate in parallel. It wouldhetworks do indeed operate as content-addressable memories
therefore be interesting to link both approaches and studin the way envisaged in both studies. Similar remarks apply
how complex spatiotemporal patterns can be stored at will iio theoretical studies about the dynamics and computational

V. DISCUSSION
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capabilities of “synfire chains’[13,14,17. Nevertheless, all ACKNOWLEDGMENTS
these results are helpful in that they prove the principal fea-

sibility of associative pattern storage and retrieval in systems |
with spiking neurons.
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